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An Adaptive Sampling Algorithm for Effective
Energy Management in Wireless Sensor Networks

With Energy-Hungry Sensors
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Abstract—Energy conservation techniques for wireless sensor
networks generally assume that data acquisition and processing
have energy consumption that is significantly lower than that of
communication. Unfortunately, this assumption does not hold in
a number of practical applications, where sensors may consume
even more energy than the radio. In this context, effective energy
management should include policies for an efficient utilization
of the sensors, which become one of the main components that
affect the network lifetime. In this paper, we propose an adaptive
sampling algorithm that estimates online the optimal sampling
frequencies for sensors. This approach, which requires the design
of adaptive measurement systems, minimizes the energy consump-
tion of the sensors and, incidentally, that of the radio while main-
taining a very high accuracy of collected data. As a case study, we
considered a sensor for snow-monitoring applications. Simulation
experiments have shown that the suggested adaptive algorithm can
reduce the number of acquired samples up to 79% with respect
to a traditional fixed-rate approach. We have also found that it
can perform similar to a fixed-rate scheme where the sampling
frequency is known in advance.

Index Terms—Adaptive systems, intelligent sensors, remote
sensing, signal sampling, wireless local area network.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are distributed mea-
surement systems with a large number of measurement

units that were deployed over a geographical area; each unit is a
low-power device that integrates processing, sensing, and wire-
less communication abilities. Units acquire information from the
surrounding environment and, after (a possible) local process-
ing, send measurements to one or more collection points or base
stations for further data aggregation and interpretation [1].

Among the set of potential scenarios, monitoring applica-
tions can particularly benefit from this technology, because
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WSNs allow a long-term data collection at scales and reso-
lutions that are difficult, if not impossible, to achieve with
traditional techniques [2]. In recent years, the number of WSN
deployments for real-life applications has rapidly increased,
and this trend is expected to even more increase in the next
years [3], [4]. However, energy consumption still remains a
major obstacle for the full diffusion and exploitation of this
technology, although batteries can be recharged, e.g., through
solar energy harvesting mechanisms [5].

In recent years, many energy conservation schemes have
been proposed in the literature (a detailed survey can be found
in [7]), which assume that data acquisition and processing have
an energy consumption that is significantly lower than commu-
nication (as a consequence, the research aims at minimizing
the radio activity). Only recently, the progressive utilization
of distributed measurement systems for monitoring complex
phenomena has shown that the aforementioned assumption
does not necessarily hold. In fact, many real-life applications
require specific sensors whose power consumption cannot be
neglected [8]. Tables I and II provide the power consumptions
of the most popular radio equipment used in sensor nodes
and some off-the-shelf sensors, respectively (the selection of
sensors has been made only to ease the reader’s understanding).
If we also consider that acquisition times are typically longer
than transmission ones, we can conclude that some sensors may
even consume significantly more energy than the radio.

As such, energy conservation schemes that aim at minimiz-
ing the radio activity need to be complemented with techniques
that implement an efficient energy management of the sensors.

In this paper, we propose a general approach that leverages
two complementary mechanisms at the sensor level: 1) duty
cycling (i.e., the sensor board is switched off between two con-
secutive samples) and 2) adaptive sampling (i.e., the optimal
sampling frequency is estimated online).

In particular, we suggest an adaptive sampling algorithm
(ASA) that adapts the sampling frequencies of the sensors to
the evolving dynamics of the process.

In the instrumentation and measurement community, the
adaptive sampling approach has been applied to address several
issues. For instance, [9] has suggested an adaptive sampling
technique to measure the difference in phase between the
fundamental components of two signals: 1) the sampling rate
is increased until the phase is correctly measured or 2) the sam-
pling rate reaches the maximum sampling rate of the system.

[10] describes a Fourier analyzer that autonomously adapts
the parameters of the filters to match the signal components
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TABLE I
POWER CONSUMPTION FOR SOME COMMON RADIOS [6]

TABLE II
POWER CONSUMPTION FOR SOME OFF-THE-SHELF SENSORS

and the measuring channels. The result is that the picket-fence
effect and leakages are reduced (but the method can be applied
only to periodic signals). [11] presents a velocity-adaptive
measurement system for closed-loop position control that relies
on the adaptation of the sampling frequency to improve the
response time.

In [12], the authors propose a decentralized approach to
adaptive sampling, which uses a Kalman filter to predict the
sensor node activity and correspondingly adjust the sampling
frequency.

ASA is more general than the aforementioned solutions,
because it does not assume any hypothesis with regard to the
nature of the signal (e.g., stationarity); moreover, its computa-
tional load is acceptable for midcomplexity WSN units.

ASA identifies the minimal sampling frequency online,
which guarantees the reconstruction of the sampled signal; thus,
it reduces the power consumption of the measurement phase
by adapting the sampling frequency to the real needs of the
physical phenomena under observation.

By decreasing the number of acquired samples, ASA also
reduces the amount of data that will be transmitted and, as a
consequence, the energy that the radio consumed. In addition,
the proposed approach can be integrated with other techniques
for energy conservation by acting at different abstraction levels
(e.g., data aggregation and/or compression).

This paper is organized as follows. Section II introduces
ASA. Section III presents the snow sensor that is used as a
case study to assess the performance of the algorithm and the
simulation environment that was used for performance analysis.
Simulation results are finally presented in Section IV.

II. ASA: THE PROPOSED METHODOLOGY

The proposed ASA differentiates from the aforementioned
literature by adapting online the sampling frequency of the
sensor to the physical phenomenon under monitoring, provided
that a change in the maximum frequency is detected.

Detecting a change in a noisy nonstationary environment
is quite an open research issue that was generally addressed
with a statistical approach (for example, see [13]–[15]). Here,
we found a modification of the cumulative sum (CUSUM)
change detection test [16] to be particularly appropriate, which
is widely used in the system-control community. In particular,
we configured the test to detect changes that are associated
with the highest frequency Fmax of the signal, with Fmax being
related to the minimum sampling frequency FN as per Nyquist
FN > 2Fmax [17].

Frequency Fmax is not available a priori and changes
over time in a nonstationary process. Consequently, it clearly
emerges that FN also changes over time and that, by adapting
the sampling frequency, oversampling is avoided, signal recon-
struction is guaranteed, and power consumption reduction is
obtained.

The proposed algorithm initially estimates, through a fast
Fourier transform, Fmax by using the first W acquired data,
which are assumed to be generated by a stationary process.
The initial sampling frequency is Fc = cFmax, where c is a
confidence parameter that, according to Nyquist, must be larger
than 2 (it is common to pick a sampling frequency three to five
times higher than the signal maximum frequency [18]). The
value of Fmax can be determined with different techniques.
Here, Fmax is identified by relying on a signal-to-noise ratio
philosophy, i.e., Fmax is the frequency for which the ratio
between the energy of the signal up to Fmax and the energy of
the residual segment of the right spectrum, starting from Fmax,
is 100.

To allow CUSUM to detect the change in the maximum fre-
quency, we designed the following two alternative hypotheses:

Fup =min
{

(1 + δ) · Fmax,
Fc

2

}
Fdown =(1 − δ) · Fmax

which address an increment and a decrement in the maximum
frequency, respectively. δ ∈ �+ is a user-defined confidence



ALIPPI et al.: ASA FOR EFFECTIVE ENERGY MANAGEMENT IN WSNs WITH ENERGY-HUNGRY SENSORS 337

Fig. 1. Detecting a change in the maximum frequency.

parameter that represents the minimum detectable frequency
change. In other words, δ represents the minimum percentage
change in the maximum frequency, which must be detected
by ASA. Of course, this value is an independent parameter
that the user/designer must set; for example, δ = 3% implies
that changes that affect Fmax for more than 3% Fmax must
be detected (to be intended in statistical terms). Fup might
significantly be influenced by the value of δ. In fact, when δ is
small, then Fup

∼= Fmax, and we should expect an increment in
the number of false positives in detection. On the other hand, for
higher δ, Fup

∼= (Fc/2), and the algorithm might suffer from
the presence of false negatives. Obviously, Fup cannot be larger
than Fc/2 due to the Nyquist theorem. Fdown is less influenced
by δ, because a decrement in the maximum frequency above
δFmax is detected (aliasing effects are not introduced here).

During the operational life, a change is detected in the
process when the current maximum frequency Fcurr (estimated
over a W samples sequence) overcomes one of the following
thresholds:

thup =
Fmax + Fup

2
= Fmax(1 + δ/2)

thdown =
Fmax + Fdown

2
= Fmax(1 − δ/2)

for h consecutive samples. One example of a frequency change
is illustrated in Fig. 1. When a change in the maximum fre-
quency is detected, the sampling frequency is modified accord-
ing to the new value to track the process evolution. In short,
ASA can be synthesized in the following detection rule: if
(|Fcurr − Fup| < |Fcurr − Fmax|) for h consecutive samples
or if (|Fcurr − Fdown| < |Fcurr − Fmax|) for h consecutive
samples, then the new sampling frequency is Fc = cFcurr.

The proposed algorithm is given in Algorithm 1.

Algorithm 1: ASA (c, δ, h)
1. Store the W initial samples that come from the process in

the Dataset;
2. Estimate Fmax on the Dataset and set Fc = cFmax;
3. Define Fup = min{(1 + δ) · Fmax, Fc/2}; Fdown = (1−

δ) · Fmax;
4. h1 = 0, and h2 = 0; i = W + 1;
5. while (1){
6. Acquire the ith sample and add it to the Dataset;

7. Estimate the current maximum frequency Fcurr on the
sequence Dataset (i − W + 1, i);

8. if (|Fcurr − Fup| < |Fcurr − Fmax|)
9. h1 = h1 + 1; h2 = 0;
10. else if (|Fcurr − Fdown| < |Fcurr − Fmax|)

h2 = h2 + 1; h1 = 0;
11. else h1 = 0; h2 = 0;
12. if (h1 > h)‖(h2 > h) {
13. Fc = cFcurr;
14. Fup = min{(1 + δ) · Fmax, Fc/2};
15. Fdown = (1 − δ) · Fmax;
16. Fmax = Fcurr;
17. }
18. }

Low values of h (e.g., 1 or 2) allow the algorithm to quickly
detect a variation in the maximum frequency of the signal (but
we could experience false positives that induce a continuous
change in the sampling frequency). On the contrary, high values
of h (e.g., 1000 or 2000) decrease the false-alarm rate at
the expenses of a slower promptness in detecting the change.
The value of h can be either user defined (e.g., by exploiting
available a priori information about the process) or estimated
by ASA, as suggested in Algorithm 2.

Define T as the number of initial stationary samples for
configuring h (T must be sufficiently large to grant that the esti-
mate of h converges toward its expected value). We suggest, as
estimate of h, the count of the maximum number of subsequent
false positives in the training sequence.

Algorithm 2: h = Automatic Configuration of ASA
(c, δ,W, T )
1. Estimate Fmax by considering W initial samples and set

Fc = cFmax;
2. Define Fup = min{(1 + δ) · Fmax, Fc/2}; Fdown = (1−

δ) · Fmax;
3. h1 = 0, and h2 = 0;
4. h̃1 = 0, and h̃2 = 0;
5. for (i = W + 1; i < T ; i + +) {
6. Estimate the current maximum frequency Fcurr on

sequence (i − W + 1, i)
7. if (|Fcurr − Fup| < |Fcurr − Fmax|)
8. h1 = h1 + 1; h2 = 0;
9. else if (|Fcurr − Fdown| < |Fcurr − Fmax|)

h2 = h2 + 1; h1 = 0;
10. else h1 = 0; h2 = 0;
11. if (h1 > h̃1) {
12. h̃1 = h1;
13. }
14. if (h2 > h̃2) {
15. h̃2 = h2;
16. }
17. }
18. return (min(h̃1, h̃2));

In more detail, Algorithm 2 operates as follows. At first,
Fmax is estimated on the initial W samples of the train-
ing sequence (line 1). Then, Fup and Fdown are computed
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according to ASA (line 3 of Algorithm 1). The procedure
(lines 7–16) counts the maximum number of consecutive sam-
ples in subsequent samples for which Fcurr is closer either to
Fup (the counter is h̃1) or Fdown (the counter is h̃2). To be
conservative, h is the minimum between h̃1 and h̃2 (line 18).

ASA runs at the base station, which notifies updates of
the current sampling frequency to remote units (the algorithm
might be very complex to be executed on tiny devices). How-
ever, based on the conceptual point of view, there would be no
objection in using a decentralized approach that executes ASA
at the sensor-node level.

III. EXPERIMENTAL SETUP

A. Description of the Snow Sensor

To evaluate the performance of ASA in a real application,
we considered a sensor that was developed to monitor the snow
composition (e.g., slope stability assessment and avalanches
forecast). Such a sensor provides the dataset used in subsequent
simulation experiments.

The snow sensor in this paper is a multifrequency capacitive
measuring unit that was engineered to be embedded in a remote
wireless measuring system. It is composed of a probe, a main
multifrequency injection board that can measure capacity at
different frequencies [19], and a wireless unit that will be left
on the mountain (for example, fixed on a pole). The system is
powered by a rechargeable battery pack.

At each sampling cycle, the snow sensor provides measure-
ments of snow capacitance at 100 Hz (low frequency) and
100 kHz (high frequency). Such frequencies have been proven
to differentiate water from air, snow, and ice. At the same
time, a second sensor provides a measurement of the ambient
temperature.

The snow capacitances at low and high frequencies and the
temperature information are passed to the sensor node, packed
in a single message, and sent over the wireless channel. For
each measurement, the electronic injection board of the snow
sensor makes several procedures (e.g., calibration, electrode
precharging, and charge sharing) in a cyclic way to obtain a rea-
sonably stable reliable measure. This activity makes the sensor
very energy consuming; for example, by sampling data every
15 s, the average energy that was consumed is 880 mJ/sample.
Such a high value can be explained as follows: 1) the sensor is
an ad hoc sensor that was not optimized for energy consumption
and 2) the sensor is always active (no energy management is
currently available on the sensor).

We discovered that a good duty cycle for the sensor is around
2 s. Such a choice leads to an energy consumption of approxi-
mately 150-mJ/sample. When the duty cycle mechanism substi-
tutes the fixed sampling approach, an immediate energy saving
arises (here, the energy consumption of the sensor decreases of
about 80%).

B. Sensor Network Configuration

ASA can be implemented in any sensor network architecture.
However, for simulation, we considered a cluster-based archi-

Fig. 2. Cluster-based sensor network architecture.

tecture (see Fig. 2). For each node, the sampling frequency is
computed and dynamically updated at the base station and then
notified to the node through special notification messages. We
also defined a communication protocol similar to low-energy
adaptive clustering hierarchy (LEACH) [20] for collecting data
from nodes to the base station and diffusing sampling frequency
notifications in the back direction (details are given in [21]). We
implemented both ASA and the cluster-based communication
protocol by using the TOSSIM simulation tool [22], which is
a widely used simulator for WSNs. In the considered commu-
nication protocol, both nodes within a cluster and cluster heads
use a time-division multiple-access scheme for exchanging data
with the corresponding cluster head or base station, respec-
tively. Each node (cluster head) remains active only during the
time slots that were assigned for communication to minimize
the radio energy consumption. Intracluster interferences (i.e.,
collisions due to simultaneous transmissions of nodes that be-
long to the same cluster) are thus avoided by the communication
protocol, whereas intercluster interferences (i.e., collisions due
to simultaneous transmissions by nodes that belong to different
clusters) can still occur. We modeled the effects of possible
intercluster interferences as message losses. Therefore, in our
simulations, messages may be missed due to either transmission
errors or intercluster interferences.

The communication protocol uses an automatic-repeat-
request scheme based on acknowledgments, timeouts, and re-
transmissions to recover missed messages. Messages that were
not acknowledged within the timeout time are retransmitted up
to a predefined maximum number of times (see [21] for details).
In case of missing samples (i.e., messages that did not reach
the base station after the retransmission), the base station uses
a simple loss-compensation technique by replacing a missing
sample with the previous one. This step is a very simple
approach that, nevertheless, proves to be effective in increasing
the accuracy of the data sequence collected at the base station,
although the wireless communication is not completely reli-
able. Of course, alternative more complex loss-compensation
schemes, e.g., based on data missing reconstruction, can be
considered within the proposed framework.
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C. Figures of Merit

To measure the performance of ASA, we defined the follow-
ing figures of merit.

• Sampling fraction. This figure of merit is defined as the
number of samples that were acquired by the sensor ac-
cording to ASA with respect to the number of samples
that were acquired with a fixed sampling frequency. The
sampling fraction aims at evaluating the efficiency of the
algorithm.

• Sensor/Radio energy consumption. This figure of merit
summarizes the total energy that the sensor/radio subsys-
tem consumed. The total energy consumption of the sensor
is the product between the energy that each sampling cycle
drained and the number of samples that were generated
during the simulation experiment. The total energy that the
radio consumed can be modeled as

ER = Tt · Pt + Tr · Pr + Ti · Pi + Ts · Ps.

Tt, Tr, Ti, and Ts represent the total time that the
radio is in the transmitting, receiving, idle, or sleeping
operational modes, whereas Pt, Pr, Pi, and Ps refer to
the associated power consumptions. We assume, in our
simulations, that Pt ≈ Pr ≈ Pi and that the power that
was consumed in the sleeping mode is negligible with
respect to the power that was consumed in the others
modalities. Therefore, in our simulator, we implemented
the approximated model as follows:

ER = Ta · Pa

where Ta denotes the total time during which the
radio is active (i.e., Ta = Tt + Tr + Ti), and Pa =
max(Pt, Pr, Pi).

• Mean relative error (MRE). This figure of merit is de-
fined as

MRE =
1
N

N∑
i=1

|xi − xi|
|xi|

where xi denotes the ith sample in the original data
sequence, xi denotes the ith sample in the data sequence
reconstructed at the base station, and N denotes the total
number of samples in the original data sequence, respec-
tively. MRE gives a measure of the relative error that
was introduced by the algorithm in the data sequence
reconstructed at the base station. To measure the accuracy
of the temperature sequence, we also considered the mean
absolute error (MAE), which provides better indications
than MRE in this specific case. It is defined as

MAE =
1
N

N∑
i=1

|xi − xi|.

D. Parameter Settings and Methodology

In our simulations, we assumed that nodes are equipped with
the Chipcon CC1000 radio (which was used in the MICA2
motes series), whose operating parameters (as derived from

TABLE III
RADIO PARAMETERS

[6]) are shown in Table III. To set the parameters of ASA,
we referred to a preliminary analysis that was carried out in
a previous paper [23], which suggests that W = 512, c = 2.1,
δ = 2.5%, and h = 40. Finally, the parameter values that were
used by the communication protocol to collect data and diffuse
sampling-rate notifications are reported in [21].

We assessed the performance of ASA by using four differ-
ent datasets that were derived from real measurements with
the snow sensor described in Section III-A in different days
and conditions. Each dataset consists of approximately 6.000
samples that were acquired with a fixed period of 15 s. This
sampling frequency was chosen based on a priori knowledge
of the signals that will be measured (e.g., snow capacitance
and ambient temperature). It is large enough to capture quick
variations (note that it is larger than necessary, because we
expected snow capacitance and ambient temperature to change
over time).

In the experiments, message losses were modeled according
to a Bernoulli distribution. To improve the accuracy of the
simulation results, we used the replication method with a 90%
confidence level [24].

In the following discussion, unless specified otherwise, fig-
ures refer to Experiment 2 being the most critical one for ASA.
However, results are similar for other datasets.

IV. SIMULATION RESULTS

We divided our analysis into two parts. First, we investigated
the advantages and disadvantages of using ASA, in terms of
energy saving and impact on the data accuracy, with respect to
a fixed sampling-rate approach. Then, we studied the influence
of the communication reliability on the performance of the
adaptive algorithm.

A. Adaptive Versus Fixed Sampling

In the first set of experiments, we compared the evolution
over time of the current maximum frequency Fmax computed
over sliding windows of the input signal with that of Fmax as
set by ASA (note that Fc = cFmax).

As presented in Fig. 3, we appreciate the fact that ASA is
effective in adapting the sampling frequency to the real needs of
the physical phenomenon under monitoring. The figure shows
that Fmax and Fc/2 are the maximum frequency currently
available in the signal and the maximum frequency detectable
by ASA according to the Nyquist theorem, respectively. Obvi-
ously, when Fc/2 < Fmax, aliasing effects may occur, but ASA
reacts by increasing the maximum sampling frequency.
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Fig. 3. Sampling rate as a function of the samples.

Initially, the sampling frequency was set to 1/15 Hz up to
Sample 512 (we did not know the initial optimal sampling
rate, and we opted to have it overdimensioned). Then, ASA
reduces the sampling frequency to 1/75 Hz (obviously, any
change in Fc is reflected on Fc/2); this approach allows us to
reduce the number of acquisitions while maintaining the signal-
reconstructing ability at the base station (under the no-message-
loss hypothesis). We experience an increase in Fmax around
Sample 620, and ASA adapts Fc to be 1/60 Hz. Finally, the
increase in Fcurr around Sample 990 induces a next increment
in the sampling frequency to 1/45 Hz. We note that the abrupt
change in frequency that occurs at around Sample 990 intro-
duces aliasing phenomena, because Fmax is larger than Fmax.
Once that nonstationarity has been detected, ASA intervenes
and adapts the frequency at Sample 1030 (with a delay function
of the window size W and the change detection mechanism;
here, the delay is about 40 min, because the sampling rate is
about 1 sample/min, and h = 40).

When messages are lost during communication, the general
trend does not change, aside from a further delay in adapting
the sampling frequency (due to the larger delay that was expe-
rienced by notification messages).

We comment that, initially, the sensor node uses the maxi-
mum sampling rate 1/15 Hz. Afterward, once the base station
has received W = 512 samples, the new sampling frequency
is notified to the sensor node. Then, the base station continues
to compute the sampling rate based on the received samples to
adjust it to the current dynamics of the signals.

Fig. 4 shows the sampling fractions with respect to both fixed
sampling periods (i.e., 15 s and the optimal) for the various
datasets and for different values of (hop-by-hop) message-
loss probability. At each hop, messages that were missed by
the destination are retransmitted up to two times. ASA can
significantly reduce the number of samples with respect to
a traditional approach based on a fixed sampling frequency.
The number of samples that will be acquired is reduced to
21%–34% (depending on the dataset and message-loss rate)
with respect to the 1/15-Hz sampling rate. Fig. 4 shows that
ASA may also outperform the optimal (but unfeasible) fixed-
rate approach in terms of the sampling fraction (and, hence,
energy efficiency), particularly when the communication is
reliable (i.e., for a low probability of message loss). This result
is a consequence of the fact that ASA can adapt the sampling
frequency to the current signal dynamics and can thus take
advantage of current demands.

Fig. 4. Sampling fraction as a function of the message loss rate for different
datasets.

Fig. 5. Total energy that the snow sensor consumed.

Fig. 6. Energy that the radio consumed.

The decrease in the sampling fraction that was provided
by ASA results in a corresponding decrease in the energy
consumption for both sensing and communication. Figs. 5
and 6 show the total energy that was consumed by the snow
sensor and the radio, respectively, for Dataset 2. Note that the
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Fig. 7. MRE for low-frequency capacitance as a function of the message loss.

Fig. 8. MRE for high-frequency capacitance as a function of the message loss.

Fig. 9. MRE for temperature as a function of the message loss.

energy savings that were provided by ASA are not obtained
at the expense of a decreased accuracy in the data sequence
collected at the base station. Figs. 7 and 8 show the MRE for
the snow capacitance at low and high frequencies, respectively,
whereas Fig. 9 presents the same index for the temperature.
The MRE, both at low and high frequencies, remains very

low (i.e., 1%–2%), although the (hop-by-hop) message-loss
probability increases up to 30%. On the contrary, the MRE for
the temperature is high for all datasets (see Fig. 9), because
the temperature ranges from −3 to 23 ◦C (measurements have
been done during spring time) and remains close to zero for
a large fraction of the experiment. Thus, when the absolute
value of the measurement is close to zero, even small deviations
from such value can cause large errors. Hence, in this specific
case, we also evaluated the MAE, as summarized in Table IV,
for the different datasets and message-loss probabilities. We
can see that the average (absolute) deviation from the original
temperature sequence is always negligible.

B. Impact of Communication Unreliability

According to the previous section, ASA can actually reduce
the percentage of samples that will be acquired while assuring
that the information will be delivered at the base station. How-
ever, its performance, in terms of energy efficiency, degrades
as the (hop-by-hop) message-loss probability increases (see
Figs. 4–6), because ASA reduces the sampling frequency by
exploiting the temporal correlation among consecutive sam-
ples. As such, to correctly work, ASA requires (almost) all
data to be received by the base station. The algorithm can
tolerate a certain fraction of missing samples due to the loss-
compensation mechanism (the phenomenon under monitoring
is assumed to slowly change over time). However, when the
percentage of missing messages becomes significant, ASA may
react by increasing the sampling frequency. Moreover, if the
communication is unreliable, notifications that were sent by the
base station to sensor nodes to update the sampling frequencies
may get lost or experience a large delay. Thus, a node might
operate with obsolete sampling frequencies, even for a long
time. If the sampling frequency for a sensor is higher than
required, oversampling occurs. If it is lower, aliasing effects
may occur.

To make the adaptive sampling approach effective, we should
thus guarantee a message delivery ratio (i.e., the percentage of
messages correctly received by the final destination) in both
directions close to 100%, e.g., through an acknowledgment-
based retransmission protocol as considered here. In [25], it
has been found that retransmission is the most efficient ap-
proach to data transfer reliability in WSNs. Obviously, message
retransmission increases the delivery ratio but at the cost of
additional energy consumption. It is thus important to evaluate
the impact of message retransmissions in terms of energy
consumption for the overall system (both sensor and radio). A
set of experiments was then carried out, in which the maximum
number of retransmissions per message max_rtx changed in
the range [0,3].

Fig. 10 shows the impact of the max_rtx value on the
sampling fraction for increasing message-loss probabilities. As
expected, the sampling fraction significantly decreases when
the maximum number of retransmissions per message increases
as the delivery ratio accordingly increases, as shown in Fig. 11.
With max_rtx ≥ 2, more than the 85% of messages are de-
livered to the final destination (even with a link message-loss
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TABLE IV
MAE FOR THE TEMPERATURE AS A FUNCTION OF THE MESSAGE LOSS (IN DEGREE CELSIUS)

Fig. 10. Sampling fraction for different max_rtx values.

Fig. 11. Delivery ratio for different max_rtx values.

probability of 30%), and the performance of ASA is similar to
or even better than that of the (unfeasible) fixed-rate approach.

In terms of energy consumption, a reduced sampling fraction
that was caused by an increased delivery ratio immediately
turns out into a lower sensor energy consumption, as shown
in Fig. 12. Things are not so straightforward for the energy
consumption of the radio, which is given by the sum of two
different components with contrasting behavior. On one hand,
a large number of retransmissions lead to a high energy con-
sumption. On the other hand, a low sampling frequency implies
a lower number of messages that will be transmitted.

The total energy that the radio equipment consumed is shown
in Fig. 13. We can see that, in any case, it is much smaller than
the energy that the sensor consumed. We appreciate the fact that
ASA is really effective as the additional costs that were required

Fig. 12. Total energy that the sensor consumed for different max_rtx values.

Fig. 13. Total energy that the radio consumed for different max_rtx values.

to achieve a message delivery ratio that is close to 100% are
largely compensated by the reduction in the number of samples
that will be acquired and transmitted.

Obviously, the aforementioned results strongly depend both
on the specific sensor and the chosen sensor node platform.
To show the effect of different sensor platforms, we also
considered sensor nodes that were equipped with the CC2420
radio. The CC2420 radio is an evolution of the CC1000 one,
which was considered in previous experiments and is used, for
example, in TmoteSky sensor nodes. It allows for a bit rate of
250 kb/s (the bit rate that was provided by CC1000 is 19.2 kb/s),
and its power consumptions in the transmit and receive modes
are shown in Table I (here, we assumed that the power con-
sumption in the idle mode is equal to that in the receive
mode, whereas the power consumption in the sleep mode is
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Fig. 14. Comparison of the total energy that was consumed for data communi-
cation when using the CC1000 and CC2420 radio equipment (max_rtx = 2).

negligible). Fig. 14 shows the total energy that was consumed
by the sensor node for communication when using the two
different radios, under the assumption that each message is
retransmitted up to two times. The energy consumption is
significantly lower when using the CC2420 radio, because the
bit rate is more than one order of magnitude larger than the
CC1000 one at the cost of a comparable power consumption.
The energy cost for communication is lower; thus, when using
the CC2420, a larger number of retransmissions per message
can be allowed. By increasing the delivery ratio, this approach
results in a significant decrease in the sensor (i.e., overall)
energy consumption.

The aforementioned results confirm the effectiveness of ASA
in reducing the overall energy consumption in the presence of
energy-hungry sensors. Moreover, the evolution from CC1000
to CC2420 is paradigmatic of a general trend that has been
observed in recent years in wireless technologies for sensor
networks, where there has been a significant increase in the bit
rate provided by the sensor nodes with only a limited increase
in their power consumption.

V. CONCLUSION

This paper has proposed an ASA for WSNs, which can
dynamically estimate the optimal sampling frequency of the
acquired signals. The algorithm has originally been conceived
to reduce the energy consumption of a prototype sensor for
snow-monitoring applications; however, the proposed approach
is general and can be used in all cases where the process that
will be monitored exhibits a slow variation over time.

We performed an extended simulation analysis based on
traces from real measurements by using the TOSSIM simu-
lation tool. We found that ASA can reduce the number of
acquired samples up to 79% with respect to the fixed sampling
frequency while generally preserving the accuracy of the data
sequence collected at the base station. This approach results
in a corresponding energy saving of both the sensor and the
radio. We have also found that, due to its ability to adapt
the sampling frequency to the real activity, our algorithm may

perform similar to or even better than a fixed-rate scheme where
the optimal sampling frequency is known in advance.

ASA exploits temporal correlation among successive data
sample; thus, it requires a message reliability close to 100% to
efficiently work. Through simulation, we evaluated the cost, in
terms of additional energy consumption of the radio, to fulfill
this requirement. We found that benefits largely predominate
over costs as the energy consumption of the overall system (i.e.,
both the sensor and the radio) is reduced. We are aware that
this conclusion strongly depends on the specific sensor, whose
power consumption is significantly larger than that of the radio,
but the analysis makes the point. In general, one should evaluate
whether it is more convenient to acquire redundant data and
tolerate some message loss or minimize the number of acquired
data and ask for a 100% reliability in message delivery. Obvi-
ously, the optimal strategy depends on the relative cost, in terms
of energy consumption, for data acquisition of the communica-
tion, i.e., on sensors and sensor nodes that were used.
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